官方博客  中文版 | ENGLISH

客服热线:0517-86930968  13951262528 

当前位置:首页 > 技术文章 
电磁流量计实际应用中抗干扰技术分析
更新时间:2017-3-22 8:56:51 浏览:289 关闭窗口 打印此页
电磁流量计实际应用中抗干扰技术的研究和分析
 
概述
电磁流量计的发展和应用与其抗干扰技术的发展进步密切相关,特别是近几十年来采用三直低频矩形波动励磁技术和双频矩形波励磁技术,以及微处理器硬件和软件技术明显地提高了电磁流量计抗干扰能力和测量精度,扩大了电磁流量计的应用领域,改变了人们长期认为电磁流量计测量精度低,抗干扰能力差的概念。
使用场合        
在工业上,流量计是一种流量测量仪表,电磁流量计也是流量仪表的一种,一般来说电磁流量计在不同场合使用的类型也是不同的。
1.在食品卫生、医药等行业中,要求电磁流量计的传感器容易被拆卸,这样清洗起来也很方便,便于定期对其进行蒸汽灭菌。所以,在卫生行业中,电磁流量计要符合卫生型的规格。
2.在冶金、造纸、污水处理等行业中,电磁流量计一般是分离型的、大口径法兰连接式的;而在生物医药、化工等工业中则使用小口径、一体型夹装连接方式的比较多,不同的领域需要的电磁流量计的规格是不一样的。
3.在一些特殊的地方,比如一些防爆型的场合中,需要仪表具有很好的防爆防燃性能,在这些场合中,激磁电流的能量是非常大的,电磁流量计可以分为气密型的、隔膜型和充砂型等这几种。
 
随着科技的快速发展,现在激磁电流的功率下降了很多,所以在防爆场合中最常见的流量计是安全火花型的,它是由流量的传感部分和转换部分组成的,主要是用在危险区域内。
4.在渠道中使用的仪表是潜水型的,主要是用于工业排水和下水道中,他们要借助启闭机的力量进行相关排水工作。同时电磁流量计的传感器要安装在明渠的挡板下不,要长期浸泡在水下面。
工作原理        
电磁流量计是基于导电性流体在磁场中运动所产生的感应电势来推算流体流量的测量仪表,其基本工作原理是电磁感应定律。
因此电磁耦合静电感应是电磁流量计干扰噪声的首要来源;被测流体介质特性产生的电化学干扰噪声是电磁流量计干扰燥声的第二来源;电磁流量计供电电源的电压和频率波动等电源干扰噪声是电磁流量计干扰噪声的第三来源。
以上三类干扰噪声的来源、机理、特性不同。对电磁流量计的影响方式不同,相应采用的抗干扰措施也不同。
智能电磁流量计抗干扰技术的研究(Ⅱ)
电磁流量计抗干扰技术的发展历史        
电磁流量计的发展历史就是其抗干扰技术的发展历史。早在1832年,英国物理学家法拉第构想地球磁场来测量泰晤土河水的流速,并进行了现场实验,但未能获得成功。
主要原因是在直流励磁磁场下存在流体介质的极化效应和热电效应而产生干扰噪声淹没了流量信号电势。河床短路了流速信号电势,加之当时的流量技术远远没有达到解决各种干扰噪声的抑制和高阻抗信号测量的水平,因此导致首次电磁流量计实验研究的失败。
诚然,从电磁流量计研究伊始就面临如何克服各种干扰噪声的棘手难题,正因如此,在以后的电磁流量计研究过程中,人们都将其抗干扰技术列为首要的技术问题。
 
发展历程        
电磁流量计励磁技术的发展极大地推动其抗干扰技术的进步。50年代末电磁流量计首次工业应用开始,电磁流量计抗干扰技术的发展经历了几个阶段,每一次进步都是为了解决其抗干扰能力的问题,促使电磁流量计抗干扰技术出现一次飞跃,电磁流量计的性能指标提高。
 
第一阶段    
 
50年代末六十年代初,为了减弱直流励磁磁场下电极表面的严重极化电势的影响,采用了工频正弦波励磁技术,但导致了电磁感应、静电耦合等工频干扰,致使采用复杂的正交干扰抑制电路等多种抗干扰措施,难以完全消除工频干扰噪声的影响,导致电磁流量计零点难以稳定、测量精度低、可靠性差。
 
 
 
第二阶段        
 
70年代中期,随着电子技术的发展和同步采样技术的问世,采用低频矩形波励磁技术,改变工频干扰的形态特征,利用工频同步采样技术,获得电磁流量计较好的抗工频干扰的能力,测量精度提高、零点稳定、可靠性增强。
 
 
 
第三阶段       
 
80年代初采用三值低频矩形波励磁技术和动态校零技术、同步励磁、同步采样技术以获得电磁流量计最佳的零点稳定性,进一步提高抗工频干扰和极化电势干扰的能力。
 
 
 
第四阶段        
 
80年代末采用双频矩形波励磁技术,既能克服流体介质产生的泥浆干扰和流体流动噪声,又能具有低频矩形波励磁电磁流量计的零点稳压性,实现电磁流量计零点稳定性、抗干扰能力和响应速度的最佳统一。
 
 
 
智能电磁流量计抗干扰技术的研究(Ⅲ)
 
 
 
电磁流量计干扰噪声的物理机理
 
 
 
1、工频干扰噪声       
 
工频干扰噪声是由电磁流量传感器励磁绕组和流体、电极、放大器输入回路的电磁耦合,另外电磁流量计工作现场的工频共模干扰,其三供电电源引入的工频串模干扰等,其产生的物理机理均是电磁感应原理。
 
 
 
首先就电磁流量传感器励磁绕组和流体、电极、放大器输入回路的电磁耦合产生的工频干扰对电磁流量计工作影响最大,而且在不同的励磁技术下其表现的形态、特性不同,因而采取抗干扰措施也不同。
 
   
 
 
 
    
 
对于工频共模干扰和工频串模干扰是常见的干扰,主要是由于电磁屏蔽缺陷、分布电容耦合、电磁流量计接地不良等原因产生,采用输入保护技术、高输入阻抗、高共模抑制比自举前置放大器技术以及重复接地技术,工频宽脉冲同步采样技术等提高抗工频干扰的能力。
 
 
 
2、流体介质特性产生的电化学干扰噪声       
 
电化学极化电势干扰是由于电极感生电动势在两极极性不同而导致电解质在电极表面极化产生。
 
 
 
虽然采用正负交变励磁磁场能显著减弱极化电势的数量级,但不能根本上完全消除极化电势干扰。其特性于流体介质的性质、电极材料性质、电极的外形尺寸形状有关,具有变化缓慢,数量级不大等特点。
 
   
 
 
 
    
 
对于工频共模干扰和工频串模干扰是常见的干扰,主要是由于电磁屏蔽缺陷、分布电容耦合、电磁流量计接地不良等原因产生,采用输入保护技术、高输入阻抗、高共模抑制比自举前置放大器技术以及重复接地技术,工频宽脉冲同步采样技术等提高抗工频干扰的能力。
 
 
 
3、供电电源性干扰      
 
 电磁流量计一般都采用工频交流电源供电,其电源电压的幅值和频率的变化都会给电磁流量计带来电源性干扰噪声。对电源电压的幅值变化,因采用多级集成稳压,一般而言电源电压的幅值变化对电磁流量的测量精度影响不大。
 
 
 
当电源电压的频率波动时,虽然其波动范围有限,但对电磁流量计测量精度影响较大。
上一篇文章: 如何经济性选购适...
下一篇文章: 电磁流量计实际应...
在线客服系统